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ABSTRACT
Road network is a basic component of intelligent transportation
systems (ITS) in smart city. Informative representation of road
networks is important as it is essential to a wide variety of ITS
applications. In this paper, we propose a neural network representa-
tion learning model, namely Intersection of Road Network to Vector
(IRN2Vec), to learn embeddings of road intersections that encode
rich information in a road network by exploring geo-locality and
intrinsic properties of intersections and moving behaviors of road
users. In addition to model design, several issues unique to IRN2Vec,
including data preparation for model training and various relation-
ships among intersections, are examined. We evaluate the learned
embeddings via extensive experiments on three real-world datasets
using three downstream test cases, including prediction of traffic
signals and crossings on intersections and travel time estimation.
Experimental results show that the proposed IRN2Vec outperforms
three existing methods, DeepWalk, LINE and Node2vec, in terms of
F1-score in predicting traffic signals (22.21% to 23.84%) and cross-
ings (8.65% to 11.65%), andmean absolute error (MAE) in travel time
estimation (9.87% to 19.28%).
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1 INTRODUCTION
Owing to population growth, urbanization, and technological ad-
vances in recent years, efforts for modernizing and smartening the
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various infrastructures of cities have been planned in many coun-
tries, aiming to transform urban areas economically by adopting
new information and communication technologies. As an important
branch of the smart city, intelligent transportation systems (ITS) [15],
have received significant interests from academia, industry and gov-
ernments, owing to the growing demands of solutions to address
various transportation issues. The goal is to optimize the transporta-
tion systems to improve the efficiency and safety of transportation
by addressing various issues, such as traffic congestion, pollution
and accidents.

The core of ITS includes functionalities of analyses, mining,
predictions, and management built upon data collected from vari-
ous sources (e.g., road networks, vehicle trajectories, traffic signal
control systems, etc.) Among them, road network is arguably the
most basic due to the ubiquitous needs in ITS. For instance, road
networks are essential to digital maps, (e.g., Google Map and Open-
StreetMap [6]), online ride hailing services, (e.g., Uber and Lyft),
self-driving cars, and various traffic analysis tasks.

Figure 1: A portion of San Francisco Road Network

Typically, a real-world road network is modeled as a directed
graph, which consists of intersections (or junctions) as nodes1 and
road segments as edges. Additionally, both the intersections (nodes)
and road segments (edges) in a road network contain not only geo-
spatial information (e.g., the coordinates), but also various informa-
tion about road characteristics and transportation facilities, such
as traffic signals, road types, number of lanes of road segments,
and so on. Take OpenStreetMap (OSM) as an example. Figure 1
shows a small portion of the San Francisco road network where
the blue lines are road segments and blue circles are intersections.
Also displayed are information such as traffic lights, crossing and
bus stops, tagged by volunteers. Indeed, as the main focus of ITS is
on road transportation, the road network and associated informa-
tion play a crucial role in various ITS applications, e.g., travel time
estimation [2], destination prediction [17] and intelligent speed
adaptation [9]. In fact, it is very important to characterize the inter-
sections and road segments in road networks. For example, 40.1%
of all traffic accidents in the United States happen at intersections
1In this paper, we use the terms “intersection”, “junction” and “node” interchangeably.
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and nearby areas [11]. Identifying intersections/areas with high
accident rate may facilitate better understanding of the causes and
adaptation of road conditions, e.g., setting a proper speed limit.
Properly characterizing and representing intersections and road
segments of road networks are important and useful for various
ITS applications, especially those formulated as prediction tasks.

In order to achieve good performance in these ITS applications,
high-quality features of intersections or road segments that cap-
ture intrinsic properties of road networks, such as the topological
network structure, geo-locality and homogeneity amongst intersec-
tions and road segments are much needed, which conventionally
require labor-intensive feature engineering effort by domain ex-
perts. Recently, representation learning techniques [27], aiming to
automatically learn useful latent feature vectors (also called embed-
dings) of data objects as inputs to machine learning or data mining
algorithms, have been developed and well received in the fields
of speech recognition [23], computer vision [1], natural language
processing (NLP) [7, 22], etc. In this paper, inspired by the successes
in these fields, we investigate the issue of representation learning
for real-world road networks, aiming to learn useful road network
embeddings for general support of various ITS applications. As a
first attempt to the aim, to the best knowledge of the authors, we
focus on learning of intersection embeddings.2

To learn representations of road networks, it is natural to ap-
ply existing representation learning methods designed for general
networks by treating a road network as a general network. How-
ever, simply applying the existing network representation learning
methods for road network representation learning is impractical.
Firstly, although network representation learning methods aim to
capture the topological structure of networks, they do not consider
the spatial properties of road networks, e.g., the geo-locality of
intersections. Secondly, network representation learning methods
usually apply random walk to sample relevant nodes, which fails
to capture the moving behaviors of mobile road users who tend to
take the shortest paths to move from their sources to destinations.
Finally, network representation learning methods usually do not in-
corporate relationships among intersections, such as homogeneity
amongst intersections.

To fill this gap between the conventional network representation
learning methods and road networks, we propose a new neural
network (NN) model, namely Intersection of Road Network to Vector
(IRN2Vec), aiming to embed a road network into a low-dimensional
space where each intersection is represented as a latent feature
vector. The IRN2Vec model encodes rich features of a road network
by exploring the geo-locality and homogeneity of intersections,
the moving behaviors of mobile users, and the topological network
structure.

To train the IRN2Vec model, we design a new learning frame-
work, also called IRN2Vec (as shown in Figure 2), which learns latent
vectors of the intersections in a given road network. In specific,
the IRN2Vec framework consists of two phases: (1) Training data
preparation: A new data preparation approach samples the shortest
paths by simulating user moving behaviors to prepare training data
for learning the IRN2Vec model; (2) Intersection representation

2We leave road segments to the future work.

learning: The IRN2Vec model which learns intersection embed-
dings by jointly maximizing the likelihood of predicting various
relationships existing among intersections. Furthermore, to be scal-
able for large-scale real-world datasets, we leverage asynchronous
stochastic gradient descent in representation learning in parallel.
Finally, we evaluate the effectiveness of the learned intersection
embeddings by predictive ITS applications in digital road maps (i.e.,
missing tag prediction and travel time estimation).

A Road Network (OpenStreetMap) 
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Figure 2: Overview of the IRN2Vec Framework

The main contributions of this paper are summarized as follows.
• A new problem and novel ideas for intersection repre-
sentation learning. In this paper, we analyze the impor-
tance of intrinsic properties of the road networks. Accord-
ingly, we propose novel ideas to learn meaningful intersec-
tion embeddings. They are able to generally support various
ITS applications with better performance.

• Anewrepresentation learning framework for roadnet-
works.We propose a two-phase framework to learn repre-
sentations of intersections in road networks by encoding
various relationships among intersections. The training data
preparation algorithm in Phase 1 samples shortest paths to
prepare training data. The IRN2Vec model in Phase 2 works
as a multi-task binary classifier that jointly captures various
relationships among intersections.

• Empirical study on multiple predictive applications
using three real-world data.We conduct extensive exper-
iments to evaluate the performance of the proposed IRN2Vec
model on two missing tag prediction tasks and a travel time
estimation task using three real-world datasets. The Exper-
imental results show that IRN2Vec outperforms a baseline
and three general network representation learning methods
in terms of F1-score in predicting traffic signals (22.21% to
23.84%) and crossings (8.65% to 11.65%), and mean absolute
error (MAE) in travel time estimation (9.87% to 19.28%).

The remainder of this paper is organized as follows. Firstly, we
review the related work in Section 2, and present our problem for-
mulation in Section 3. Then, we present the novel IRN2Vec frame-
work in Section 4 and report the evaluation result on real-world
data in Section 5. Finally, we conclude the paper in Section 6.
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2 RELATED WORK
In past several years, the topic of representation learning has re-
ceived significant interests in the fields of machine learning and
data mining, owing to its advantages in reducing the labor-intensive
effort in feature engineering [3]. The goal is to automatically trans-
form raw data into low-dimensional latent vectors (i.e., embed-
dings), as input features to machine learning and data mining
algorithms. Recently, neural network (NN) based representation
learning models have achieved great success in various domains,
including natural language processing (NLP) [26], speech recogni-
tion [5], and computer vision [1], etc.

Inspired by the aforementioned advances, research on represen-
tation learning has been extended to network data [8, 16, 19–21, 24].
Earlier works on network representation learning have attempted
to partition a graph into different communities by exploring social
dimensions [21]. By clustering nodes into different affiliations, the
representation for each node is determined by its membership in dif-
ferent affiliations. These studies provide a cluster-centric view of the
network, but do not manage to well catch valuable information em-
bedded in the underlying topological network structure. In recent
years, several works on network representation learning [8, 16, 20]
have been proposed by exploring the network locality of nodes in
networks. These works typically assume that nearby nodes (e.g.,
nodes within a specified k-hop neighborhood) are relevant and thus
tend to place their learned representations close to each other in
the latent feature space. DeepWalk [16] learns node representations
by sampling nearby nodes via uniform random walk to traverse
the network, and then applies Skip-gram model [13] to learn node
representations by maximizing the likelihood of predicting whether
two nodes are within k-hop to each other. Node2vec [8] also aims
to learn node representations but focuses on the issue of sampling
the network neighborhood relationship by applying parameterized
random walk rather than uniform random walk. The parameterized
random walk have two parameters: return parameter p in and out
parameter q, which controls the walking process by the possibility
of returning back to the previous node or selecting the next node
away from the previous node to simulate BFS and DFS search strate-
gies, respectively. Instead of employing random walk, LINE [20]
basically samples node relevance in accordance with the frequen-
cies of their 1-hop and 2-hop connectivity. It captures first-order
similarity (similarity between adjacent nodes) and second-order
similarity (similarity between nodes with common neighbors), sep-
arately, to learn two representations of nodes which are used by
concatenation. The methods we have discussed above leverage only
network structural information to obtain network embeddings. As
nodes and edges in real-world networks are often associated with
attributes. Therefore, it is desirable for network embedding methods
to learn from the rich content in node attributes and edge attributes.
Text-Associated DeepWalk (TADW) [24] is proposed to incorporate
text features of nodes into network representation learning, and
CENE [19] is a network embedding method which jointly models
network structure and textual content in nodes.

Different from existing works, the proposed IRN2Vec explore the
intrinsic geo-spatial properties of nodes and their relationships in
road networks so as to learn an effective road network representa-
tion. By simultaneously learning the topological network structure,

geo-closeness and node characteristics targeted in our model via a
simple yet effective shortest-path sampling approach that resem-
bles user moving behaviors, the embeddings learned by IRN2Vec
can be generally employed to support multiple ITS applications.

3 PRELIMINARIES
In this section, we define important terms and concepts, formulate
the tackled problem, and discuss the challenges.

3.1 Road Network and Intersection Sequence
Definition 1. RoadNetwork.A road network is a directed graphG =
(V ,E,Ψ), where V is a set of nodes (i.e., intersections);3 E ⊆ V ×V
is a set of directed edges that denote road segments. Ψ : V → A
is a characteristics function of nodes, where a node v ∈ V can be
described by a set of geo-spatial characteristics A, i.e., Ψ(v) ∈ A.
Regarding the sources of geo-spatial characteristics setA, we further
discuss them in Section 4.1.

Definition 2. Intersection Sequence. An intersection sequence
SI = {v1,v2, ...,v |SI |} is a sequence of intersections (identified by
unique IDs), where vi is ith intersection in SI generated by some
sampling paths methods.

3.2 Problem Definition and Analysis
The goal of this work is to learn a representation of each node in a
road network. Our idea is to explore the intrinsic geo-spatial proper-
ties of nodes in a road network to learn embeddings of intersections
for use as input features to various predictive and analytical ITS
applications. We formally define the problem below.

Definition 3. Representation Learning on Road Networks. Given
a road network, denoted as a directed graph G = (V ,E,Ψ), road
network representation learning learns a function f : V → Rd that
projects each intersection/nodev ∈ V to a vector in ad-dimensional
latent space Rd , where d ≪ |V |.

In this work, we propose a neural network model, IRN2Vec, to
tackle the representation learning problem on road networks. Our
goal is to explore the rich information in the road network so as to
learn an effective road network representation in support of various
ITS applications with higher accuracy. To achieve this goal, we face
the following challenges: (1) Model design. A well designed neural
network model is essential for effective and efficient learning. (2)
Geo-spatial characteristics. Different from general networks, a road
network is characterized by specific geo-spatial information, e.g.,
traffic lights and stop signs on intersections, and various types of
intersections, e.g., T-junction and dead ends. Thus, how to explore
the characteristics and similarity between intersections to learn
representations of intersections requires careful study. (3) Training
data preparation. Training data need to be prepared and tailored
based on the learning logic behind the proposed IRN2Vec model.
A good sampling method is needed to capture the user moving
behaviors in road networks.

4 THE IRN2VEC FRAMEWORK
In this section, we first introduce the data preprocessing and then
the proposed IRN2Vec framework. The data preprocessing includes

3Without loss of generality, we also consider terminal/end of a road as an intersection.
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road network extraction and intersection information extraction
(i.e., coordinates, types and tages) (Section 4.1). Then, we introduce
the IRN2Vec framework which consists of two phases: 1) Train-
ing data preparation and 2) Representation learning (see Figure 2).
We first introduce the proposed IRN2Vec model, the training ob-
jective and technical issues. According the model, we then detail
the preparation of the training data. To collect training data that
reflect moving behaviors of mobile road users in road networks,
we propose to sample the network by exploring shortest paths in
road networks. Through the sampling process, we prepare positive
and negative samples for training the model in Phase 2.

4.1 Data Preprocessing
In this work, we extract road networks and user-generated tags
associated with of intersections in road networks from the Open-
StreetMap (OSM), which is a free editable and downloadable map
website [6]. We download the raw OSM data of three cities (i.e.,
San Francisco, Porto and Tokyo) from OSM website to generate the
road networks.

Moreover, intersection tags are extracted from the “Highway”
tag in OSM data, which is the primary tag used for any kind of
streets or ways. As we argued previously, intersections share some
common characteristics among them. Note that intersections may
be similar due to the same traffic controls or intersection types. As
intersection types are not handily available as tags in OSM, we
derive the N-way types of intersections in terms of the number of
ways being intersected.

4.1.1 Intersection Tags. TheOpenStreetMap (OSM)mainly includes
three fundamental element types:Nodes,Ways, and Relations. Among
them, Nodes defines the position of points in the geo-space,Ways
denote the roads or areas, while Relations describe the relationship
between elements. Since the focus of this paper is on intersections
in road networks, we pay attention to Nodes in the OSM data. A
node consists of a unique ID, coordinate (i.e., longitude and lat-
itude) and several key-value pairs of tag attributes, e.g., <node
id="25496583" lat="51.5173639" lon="-0.140043"> <tag k="highway"
v="traffic_signal"/> </node>. In this paper, we select 10 most fre-
quent tags of nodes, including "give_way", "mini_roundabout",
"bus_stop", "turning_circle", "crossing", "traffic_signal", "stop_sign",
"speed_camera", "motorway_junction" and "turning_loop". Figure 3
shows some of these tags from the OSM data.

(c) Turn circle (d) Stop sign(b) Crossing sign(a) Traffic signal

Figure 3: Samples of Intersection Tags in OSM

4.1.2 N-way Types. In the real world, different types of intersec-
tions, such as T-juction and X-junction, exist. Thus, one natural
way to characterize intersections is by the number of road seg-
ments (or road ways) that are intersected at it. However, in the
OSM data, there is no tag associated with nodes to describe the
junction types. In this paper, we calculate the number of road seg-
ments passing through an intersection as the N-way type of the
intersection (N=2,3,..,6). For example, a T-junction between three
road segments, as shown in Figure 4(b). In the real world, 5-way

and 6-way intersections are less common but still exist, especially
in suburban areas with non-rectangular blocks.

(a) X-junction (b) T-junction (c) 5-way junction

Figure 4: Samples of Road Crossing Types

4.2 Representation Learning
As discussed, our idea to learn latent intersection vectors in a road
network lies in capturing shared inherent characteristics between
two intersections, e.g., same intersection tag or N-way type. The
sharing of common characteristics can be considered as a relation-
ship. In addition, the geo-spatial locality can be also considered
as a relationship, i.e., the distance between two intersections is
within certain meters. Thus, we propose to develop an NN model
that jointly predicts a set of targeted relationships between any
given pair of intersections for intersection representation learn-
ing. More specifically, as shown in Figure 5, our IRN2Vec model
is a multi-task binary classifier that takes a pair of intersections
vx ,vy ⊆ V as the inputs to predict the three aforementioned rela-
tionships between them, i.e., geo-spatial locality, same intersection
tag and same N-way type. In this model, the input layer takes in
two one-hot vectors ®vx and ®vy of length |V |, representing node
vx and vy , respectively. In the latent layer, ®vx and ®vy are trans-
formed into latent vectors Rx ′ ®vx and Ry ′ ®vy , where Rx and Ry are
two |V | × d matrices representing the transformation, Rx ′ and Ry ′
are their transpose matrices, and d is the dimensionality of the
hidden space. Next, we use inner product followed by a Siдmoid
function to predict whether two intersections vx and vy have a
specific relationship. More specifically, to present these operations
in a neural network, shown in Figure 5, we apply Hadamard func-
tion, i.e., element-wise multiplication, to aggregate the two vectors
which is denoted by Rx ′ ®vx ⊙Ry

′ ®vy , and then we apply the Identity
function for activation. Finally, the output layer, taking Summation
as the input function and Siдmoid function for activation, computes
Siдmoid(Rx

′ ®vx · Ry
′ ®vy ) respectively to predict three relationships,

correspondingly measured by (1) the probability Ploc (vx ,vy ) for
vx and vy to be located within a neighborhood of certain distance,
(2) the probability Ptaд(vx ,vy ) for vx and vy to have the same
intersection tag, and (3) the probability Ptype (vx ,vy ) for vx and
vy to have the same N-way type. The three joint probabilities are
derived as follows.

Ploc (vx ,vy ) = σ (
∑

Rx
′ ®vx · Ry

′ ®vy ) (1)

Ptaд(vx ,vy ) = σ (
∑

Rx
′ ®vx · Ry

′ ®vy ) (2)

Ptype (vx ,vy ) = σ (
∑

Rx
′ ®vx · Ry

′ ®vy ) (3)

where σ (z) = 1
1+e−z is the Siдmoid function. In our framework,

we make Rx and Ry to be the same matrix, which consists of all
intersections’ vectors, i.e., each row of this matrix denotes the vector
for an intersection. In the training process, if intersections vx and
vy are observed in the training data to satisfy one of the targeted
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prediction tasks, Rx ′ ®vx and Ry ′ ®vy are moved closer in the latent
space. Otherwise, they are moved away in the latent space.
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Figure 5: The IRN2Vec Model

The learning of IRN2Vec model parameters (i.e., intersection vec-
tors) is realized by setting multiple optimization objectives and
thus is critical to set the objective functions properly. To train
IRN2Vec, a training data set D, which contains training data entries
in the form of

〈
vx ,vy , Sloc (vx ,vy ), Staд(vx ,vy ), Stype (vx ,vy )

〉
is

extracted from the road network in the training data preparation
phase (to be discussed in the next section). In a training data entry,
Sloc (vx ,vy ), Staд(vx ,vy ) and Stype (vx ,vy ) are boolean values, in-
dicatingwhether intersectionsvx andvy are locatedwithink-meter
in the road network, and whether vx and vy have the same inter-
section tag and N-way type, respectively. With the training data set
D, the IRN2Vec model is trained by the backpropagation training
algorithm in conjunction with asynchronous stochastic gradient
descent in parallel. It goes backwards to adjust the weights in Rx
and Ry for each entry s in D, attempting to maximize the objective
function O , which is the production of Oloc (vx ,vy ), Otaд(vx ,vy )
and Otype (vx ,vy ) which are derived as follows.

Oloc (vx ,vy ) =

{
Ploc (vx ,vy ) i f Sloc (vx ,vy ) = 1
1 − Ploc (vx ,vy ) i f Sloc (vx ,vy ) = 0 (4)

Otaд(vx ,vy ) =

{
Ptaд(vx ,vy ) i f Staд(vx ,vy ) = 1
1 − Ptaд(vx ,vy ) i f Staд(vx ,vy ) = 0 (5)

Otype (vx ,vy ) =

{
Ptype (vx ,vy ) i f Stype (vx ,vy ) = 1
1 − Ptype (vx ,vy ) i f Stype (vx ,vy ) = 0 (6)

In Equation (4), (5) and (6), the functionsOloc (vx ,vy ),Otaд(vx ,vy )
andOtype (vx ,vy ) quantify how IRN2Vec correctly predicts Sloc (vx ,vy ),
Staд(vx ,vy ) and Stype (vx ,vy ) for a data entry s , respectively. In
specific, for a training data entry s = ⟨vx ,vy , Sloc (vx ,vy ), Staд(vx ,vy ),
Stype (vx ,vy )⟩, Oloc (vx ,vy ) aims to maximize Ploc (vx ,vy ), when
Sloc (vx ,vy ) is 1, and minimize Ploc (vx ,vy ), otherwise. Similarly,
Otaд(vx ,vy ) and Otype (vx ,vy ) aim to maximize Ptaд(vx ,vy ) and
Ptype (vx ,vy ), when Staд(vx ,vy ) and Stype (vx ,vy ) is 1, respec-
tively, and minimize Ptaд(vx ,vy ) and Ptype (vx ,vy ), otherwise.

To ease the computation in the optimization process, we maxi-
mize logOloc (vx ,vy ), logOtaд(vx ,vy ) and logOtype (vx ,vy ) rather
than Oloc (vx ,vy ), Otaд(vx ,vy ) and Otype (vx ,vy ). The objective
functions are shown below.

logOloc (vx ,vy ) = Sloc (vx ,vy ) log Ploc (vx ,vy )
+ [1 − Sloc (vx ,vy )] log[1 − Ploc (vx ,vy )]

(7)

logOtaд(vx ,vy ) = Staд(vx ,vy ) log Ptaд(vx ,vy )
+ [1 − Staд(vx ,vy )] log[1 − Ptaд(vx ,vy )]

(8)

logOtype (vx ,vy ) = Stype (vx ,vy ) log Ptype (vx ,vy )
+ [1 − Stype (vx ,vy )] log[1 − Ptype (vx ,vy )]

(9)

The overall objective function O is defined as follows.

O =
∑
s⊆D

{
α logOloc (vx ,vy ) + β logOtaд(vx ,vy )

+(1 − α − β) logOtype (vx ,vy )
} (10)

where α and β are weighing parameters.
We apply asynchronous stochastic gradient descent in parallel

to maximize the objective functionO . Specifically, for each training
data entry, it goes backwards to adjust the weights of intersections
vx and vy in Rx ′ ®vx and Ry ′ ®vy based on the gradients, respectively,
as shown below.

Rx
′ ®vx := Rx

′ ®vx + [αd logOloc (vx ,vy )

+ βd logOtaд(vx ,vy ) + (1 − α − β)d logOtype (vx ,vy )]/dRx
′ ®vx
(11)

Ry
′ ®vy := Ry

′ ®vy + [αd logOloc (vx ,vy )

+ βd logOtaд(vx ,vy ) + (1 − α − β)d logOtype (vx ,vy )]/dRy
′ ®vy
(12)

4.3 Training Data Preparation
According to the need of model training, in Phase 1, we sample
pairs of intersections in the road network to prepare training data
entries for the IRN2Vecmodel in the form of s = ⟨vx ,vy , Sloc (vx ,vy ),
Staд(vx ,vy ), Stype (vx ,vy )⟩. Our design decision represents a trade-
off in data collection between the computational efficiency (i.e., sam-
pling instead of enumeration) and the quality (i.e., the training data
should cover as many intersections as possible). Conventionally,
network representation learning techniques adopt random walk
to sample the network structure. However, we argue that random
walk based sampling is not suitable for road networks because mo-
bile road users do not move randomly. Therefore, we adopt shortest
path, which is more aligned to the moving behaviors of mobile road
users, to sample the road networks. More specifically, we apply
Dijkstra (using a Min-heap as priority queue) to generate short-
est paths (i.e., intersection sequences) between randomly selected
intersection pairs. Then, we generate training data by using the
generated intersection sequences. We empirically show that short-
est path sampling approach soundly outperforms random walk
sampling on multiple applications.

Along a sampled shortest path, which can be seen as an in-
tersection sequence SI , we extract coordinates, tags and N-way
types of intersections to prepare the training data for our explo-
ration of geo-spatial locality, same-tag, and same-type relationships,
based on the ground truth. For locality, conventional graph embed-
ding techniques typically adopt a notion of hop-based neighborhood.
Given an example of intersection sequence SI = {v1,v2,v3,v4,v5},
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where a sliding window of 2-hop is used, we have three neigh-
borhood windows w1 = {v1,v2,v3}, w2 = {v2,v3,v4} and w3 =
{v3,v4,v5}. However, this definition of window size does not cap-
ture the geo-spatial characteristics. As shown in Figure 6, inter-
sections v3 and v5 are distant but they are treated as close by a
2-hop window. Generally speaking, near things are more related
than distant things. Therefore, in IRN2Vec, we explore distance-
based neighborhood. For the same intersection sequence in Figure 6,
where a 50m window is used to sample along the shortest path,
resulting in w1 = {v1,v2,v3}, w2 = {v2,v3}, w3 = {v3,v4}, and
w4 = {v4,v5}.

20m 20m 40m 50m
v1 v2 v3 v4 v5

Intersection Sequence SI = {v1,v2,v3,v4,v5}

50m
w1= {v1,v2,v3}

w2= {v2,v3} w3= {v3,v4}

w4= {v4,v5}
50m

50m

50m

Figure 6: An Example of Distance-based Neighborhood
Accordingly, for each pair of intersections vx and vy within a

window, we create a positive sample reflecting their geo-spatial
locality. Then, we also consider that whether vx and vy share the
same intersection tag and type. For instance, in the first window {v1,
v2, v3}, we create positive training samples ⟨v1, v2, 1, sametaд(v1,
v2), sametype (v1, v2)⟩, ⟨v1, v3, 1, sametaд(v1, v3), sametype (v1,
v3)⟩ and ⟨v2,v3, 1, sametaд(v2, v3), sametype (v2, v3)⟩, and so on,
where sametaд(vx ,vy ) and sametype (vx ,vy ) are determined by
checking whether vx and vy have the same intersection tag and
the same N-way type, respectively.

In addition to positive data, the model also needs negative data
for learning. Thus, while generating positive samples via shortest
paths, we also generate negative data following the idea of Negative
Sampling in Word2Vec [14]. For each sampled positive data entry,
we generatens negative training data entries by randomly replacing
one of the two values with either ṽx or ṽy , where ṽx or ṽy are
randomly selected intersections.

5 EXPERIMENT
In this section, we conduct extensive experiments to evaluate IRN2Vec
using three real-world road network data, against several models
for network representation learning, including one baseline and
three existing works, for comparison. We also perform sensitiv-
ity tests on parameters of IRN2Vec and examine several issues in
IRN2Vec. Finally, we evaluate IRN2Vec and those models by three
downstream applications: traffic signal classification and crossing
classification on intersections, and travel time estimation for moving
paths in road networks.

5.1 Datasets and Compared Methods
Our evaluation involves two types of real-world datasets, i.e., road
network datasets and trajectory datasets. Trajectory datasets are
used to provide the moving paths and their corresponding travel
times (i.e., the groundtruths) for travel time estimation.

5.1.1 Road Network Data. As mentioned above, we extract road
networks (with corresponding geo-spatial characteristics of inter-
sections) from the downloadable raw data from OpenStreetMap

website [6]. Our evaluation involves three road networks, includ-
ing San Francisco, Porto and Tokyo. Some statistics of the road
networks extracted are summarized in Table 1.

Table 1: Statistics of Road Network Datasets

Name #Intersections #Road segments #Tags

San Francisco 58,404 76,744 14,832
Porto 119,769 154,128 8,878
Tokyo 217,117 305,874 24,215

5.1.2 Trajectory Data. We collect three publicly accessible trajec-
tory datasets, that have GPS sample points in trajectories. Some
statistics of these trajectory datasets are summarized in Table 2.

Table 2: Statistics of Trajectory Datasets

Name #GPS Points #Trajectories Avg. Time Gap

San Francisco 11,219,955 443,406 14.12sec.
Porto 74,269,739 1,233,766 15.11sec.
Tokyo 68,275,641 273,046 15.00sec.

San Francisco [18] San Francisco taxi data collects 11 million
GPS points from 536 taxis running in San Francisco for a 30 days
period, and every taxis have two status (occupied or not). We select
the sequences of GPS points by occupied taxis to form trajectories
and remove trajectories with less than 5 sample points, which yields
0.4 million trajectories.

Porto [4] Porto taxi data collects 1.7 million taxi trajectories
(containing 74 million GPS sample points) from 442 taxis running
in Porto City over a complete year. Each taxi reports its location
every 15 second. We remove trajectories with less than 10 sample
points, which yields 1.23 million trajectories.

Tokyo [25] OpenPFLOW data collects 68 million GPS sample
points from 617,040 users in Tokyo taking different vehicles, such
as bike, train and car. We consider sequences of GPS sample points
by users taking bicycle and bus and segment them into trajectories
when there is no sample point for 45 seconds or more (which is
longer than about 99% time gaps). Then, we remove trajectories
with less than 5 sample points, which yields 0.27 million trajectories.

We evaluate the performance of IRN2Vec against one baseline
and three well known network representation learning methods.

Unique ID (UID) directly uses the unique IDs of intersections
in a network to represent each intersection as an one-hot vector.
Without learning embeddings, this method serves as the baseline.

DeepWalk [16] learns d-dimensional node vectors by capturing
node pairs withinw-hop neighborhood via uniform random walks
in the network.

LINE [20] learns node vectors by considering first and second
order proximities of nodes in a network separately. We use d/2
dimensions to capture the first-order information, and another d/2
dimensions to capture the second-order information. They together
form a d-dimensional node vector.

Node2vec [8] is generalized fromDeepWalk. It learnsd-dimensional
node vectors by capturing node pairs withinw-hop neighborhood
via parameterized random walks in the network.

IRN2Vec is the new intersection embedding model proposed
in this paper for road networks. To validate our idea of adopting
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shortest paths in training data preparation, we also make a compar-
ison with a variant of IRN2Vec based on random walks (denoted by
IRN2VecR .)

5.2 Traffic Signal Classification
In this section, we evaluate themodels by a binary classification task
which infers whether an intersection in a road network has a traffic
signal on it. We first introduce the experimental setup, including
the process of classification, the preparation of labeled datasets
and the default settings of parameters in the compared models.
Then, we perform sensitivity tests on parameters of IRN2Vec to
determine their default settings and study the unique issues in
IRN2Vec. Finally, we show the experimental results.

5.2.1 Experimental Setup. After learning the intersection embed-
dings in a road network,4 we select 2,582, 1,646 and 8,470 inter-
sections, which have the “traffic signal” tag, from San Francisco,
Porto and Tokyo datasets, respectively, as positive samples, and
then randomly select equal number of other intersections (without
the “traffic signal” tag) as negative samples to form balanced labeled
datasets. In each experiment, for a labeled dataset, we randomly
split it to 90% and 10% as the training set and test set, respectively.
We use the training set to train a classifier using the linear SVM
model and evaluate the performance using the test set. We report
the F1-score as the metric for evaluation.

Regarding default parameters, the dimensionality of intersec-
tion embeddings, d , is set to 128 for all methods, which generally
achieves the best performance. The negative (vs positive) sampling
rate ns is set to 5, and the learning rate is 0.025 in all representa-
tion learning models. The number of sampled shortest paths per
intersection wn in IRN2Vec is set to 1280. The window size ws
in IRN2Vec is set to 500m. The window size w in DeepWalk and
Node2vec is set to 5 because they achieve good performance. For
Node2vec, the two parameters p and q for parameterized random
walk are set to 1 and 4, respectively. The number of training data
sampling or the length of random walk for generating training
data varies for each model and for each dataset, in order to obtain
converged results.

IRN2Vec is implemented in C. All experiments are run on the
Ubuntu 18.04 operating system with an Intel Core i5-8400 CPU and
an NVIDIA GTX 1080 GPU.

5.2.2 Parameter Analysis in IRN2Vec. Parameters settings in our
model affect the representation learning and the application per-
formance. To decide the default settings, we vary the values of
important parameters to observe how the performance, i.e., F1-
score, changes in traffic signal classification. The results are shown
in Figure 7.

Dimensionality (d).Generally speaking, a small dimensionality
is not sufficient to capture the information embedded in the various
relationships between intersections, but a large dimensionality may
lead to noises and easily cause over fitting. Figure 7(a) shows that
setting the dimensionality d at 128 is reasonable. In these three
datasets, their improvements are relative small (about 0.79% to
1.56%) when the dimension rises from 128 to 256.

4We remove all “traffic signal” tags while learning intersection embeddings.

No. of Negative Samples (ns). We test various number of neg-
ative samples per positive sample and observe that, as shown in
Figure 7(b), the best performance is achieved when ns is set to 5 in
the three datasets.

No. of Shortest Paths Per Node (wn). Generally speaking, a
larger number of shortest paths sampled generates more train-
ing data for representation learning which usually lead to better
performance in applications. Figure 7(c) suggests that when the
wn is increased, the performance continues to improve and then
converges whenwn is set to 1280.

Table 1
Traffic_signals

Dimension ݇හDimension 32 64 128 256
San Francisco 0.8541 0.8690 0.8834 0.8895Porto 0.8112 0.8239 0.8306 0.8439
Tokyo 0.7552 0.7695 0.7819 0.7887

negtive samples��Negtive Samples 1 3 5 7San Francisco 0.8523 0.8773 0.8834 0.8678Porto 0.8106 0.8273 0.8306 0.8134Tokyo 0.7510 0.7768 0.7819 0.7742

 length of random Length of Random 160 320 640 1280San Francisco 0.7969 0.829 0.8613 0.8834

Porto 0.8113 0.8287 0.8396 0.8306Tokyo 0.7317 0.7428 0.7706 0.7819

Window Size݇හWindow Size 100 300 500 700San Francisco 0.8526 0.8677 0.8834 0.8738Porto 0.7546 0.7823 0.8306 0.8121Tokyo 0.7134 0.7586 0.7819 0.7477
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Figure 7: Parameter Analysis

Distance of Window Size (ws). Figure 7(d) shows that the per-
formance improves while thews increases from 100m to 700m (with
a step of 200m). The best performance is achieved whenws is 500m.

Weights of α and β . Finally, we evaluate the weights in the
overall objective function in IRN2Vec: α , β and 1 − α − β for weigh-
ing Oloc (vx ,vy ), Otaд(vx ,vy ) and Otype (vx ,vy ), respectively, as
derived in Equation (10). We perform grid search to tune the per-
formance. As shown in Figure 8, the performance of these three
datasets do not change much when α is set between 0.75 to 0.8 and
β is set to between 0.05 to 0.1. Consistently, the best performance
is achieved when α= 0.8 and β= 0.1. Note that when α = 0.85 and
β = 0.15 (i.e., does not consider the same-type relationship between
intersections in IRN2Vec), the experiments have the worst results,
which suggests that the same-type relationship between intersec-
tions is usually useful for representation learning and traffic signal
classification.

5.2.3 Study of Unique Issues in IRN2Vec. As discussed, several
unique issues arise in the design of IRN2Vec. In this section, we
examine the following issues: 1) shortest paths vs. random walks
in training data preparation; 2) distance-based vs. hop-based neigh-
borhoods; and 3) ablation study on tags and N-way types.

To validate our argument that shortest paths better reflect the
moving behaviors of mobile road users than random walks, we
compare IRN2Vec with its random walk variant IRN2VecR , i.e.,
all the parameter settings in both are kept the same except for
the sampling paths. As shown in Table 3, IRN2Vec is better than
IRN2VecR by 8.88% to 16.72% in traffic signal classification, which
suggests that using shortest paths for training data preparation
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Table 1
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Figure 8: Evaluation of α and β

is significantly more effective than using random walks because
mobile users naturally follow the more economic shortest paths
while moving on roads rather than randomlywalks. Thus, capturing
samples by following usermoving behaviors and geomatric distance
embedded in shortest paths, IRN2Vec achieves better performance
in traffic signal classification, while IRN2VecR only captures the
contextual information of nodes.

Table 3: Performance of Traffic Signal Classification

San Francisco Porto Tokyo
UID 0.532 0.511 0.505

DeepWalk 0.711 0.661 0.639*
LINE 0.573 0.553 0.557

Node2vec 0.713* 0.680* 0.624
IRN2VecR 0.811 0.768 0.670
IRN2Vec 0.883(23.84%) 0.831(22.21%) 0.782(22.38%)

To validate our idea of adopting distance to capture geo-locality
among intersections, we compare the proposed distance-based
neighborhood (withws=500m) for road networks representation
learning against the hop-based neighborhood (with hop number
k=5), which is widely used in conventional network representation
learning. Figure 9(a) shows that distance-based neighborhood
outperforms hop-based neighborhood in all three datasets (im-
proving by 4.13% to 8.16%), which suggests that distance-based
neighborhood, capturing the geo-spatial characteristics of the road
network, is a more natural choice for road network representation
learning.

Finally, we perform an ablation study to find the impact of same-
tag and same-type relationships between intersections upon the
performance of the proposed IRN2Vec. 5 In this study, we consider
three vaiants: 1) Complete is the complete version of IRN2Vec with
all factors considered; 2) NoTag is an IRN2Vec variant without in-
corporating the same-tag relationship in representation learning;
and 3) NoType is an IRN2Vec variant without considering the same-
type relationship in representation learning. Figure 9(b) shows that
Complete outperforms NoTag and NoType for about 3.31% to 14.38%
in the three datasets, which suggests that taking both tags and N-
way types of intersections into account are beneficial for IRN2Vec
to learn better intersection representations for traffic signal classifi-
cation.

In Figure 9(b), we also observe that NoType, which uses tags
but not intersection types, performs the worst in all datasets. This
means the N-way intersection types we derived is more informative
5Note that the shortest path sampling and distance-based neighborhood are essential
to IRN2Vec, so they are not included in this study.

than the tags generated by OSM volunteers. This may be due to
the incomplete/inaccurate tag information associated with inter-
sections in the OSM data. We dig further into this issue and find
significant amount of missing tags in open street maps. For exam-
ple, there are only 243 stop signs in San Francisco road network,
which is unreasonably few. To investigate this issue and to validate
our idea of using tags in learning, we collect additional 3,727 stop
signs from the official website of San Francisco government [10]
as supplementary stop sign tags of intersections in the San Fran-
cisco road network for representation learning. The new result is
improved for about 3.2% compared with the original one without
the augmented stop sign tags. This supports our argument that the
information of intersection tags, if available and more accurate, is
indeed useful for representation learning. Thus, the IRN2Vec em-
beddings have room to get better as the volunteer-generated tags
grow or official/proprietary geographical information describing
the road networks is used.

(b) Intersection tags and N-way types(a) Definition of window size
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San Francisco Porto Tokyo

Complete 0.8834 0.8306 0.7819
NoTag 0.8314 0.7924 0.7565
NoType 0.772 0.728 0.7189
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Figure 9: Unique Issues in Traffic Signal Classification

5.2.4 Evaluation of Model. The performance of all evaluated mod-
els on the task of traffic signal classification is reported in Table 3.
First of all, we observe that all the embedding-based methods out-
perform the UID method, which indicates that the idea of using
intersection embeddings in traffic signal classification is indeed
effective, as the intersection embeddings capture the inherent in-
formation in road networks while the UID (node identifier) ap-
proach treats intersections are independent from each other and
miss the meaningful relationships among them. Moreover, IRN2Vec
soundly outperforms all the compared models. The improvement
ratio (compared with the best of these existing models, marked by
∗) ranges from 22.21% to 23.84% in the three datasets. Moreover, the
results also show that LINE consistently performs the worst, while
DeepWalk and Node2vec have similar performance, closer but still
inferior to IRN2VecR . It may suggest that LINE, only capturing the
information of 1-hop or 2-hop neighborhood of nodes in networks,
is not suitable for road network representation learning, which has
a broader neighborhood and more general relationships. Moreover,
the result also validates our claim that using shortest path sampling
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is significantly better than random walk sampling approaches (i.e.,
DeepWalk, Node2vec and IRN2VecR ) due to the inherent nature of
movements on road networks.

5.3 Crossing Classification
To demonstrate the robustness of IRN2Vec, we evaluate the models
by performing an alternative node classification task which infers
whether an intersection in a road network has a crossing on it.
The experimental setup is the same with traffic signal classification
described previously, except for having the “crossing” tags as posi-
tive samples (5,021, 6,934 and 14,377 intersections in San Francisco,
Porto and Tokyo datasets, respectively.) Again, all “crossing” tags
in road networks are removed in learning. Note that, like in traffic
signal classification, parameter settings have been tuned but the
result are similar, so we choose the same settings as in the traffic
signal classification. We skip the details of parameter tuning due to
space constraint.

Table 4: Performance of Crossing Classification

San Francisco Porto Tokyo
UID 0.527 0.516 0.509

DeepWalk 0.692 0.635 0.718
LINE 0.554 0.567 0.577

Node2vec 0.717* 0.644* 0.734*
IRN2VecR 0.726 0.667 0.719
IRN2Vec 0.779(8.65%) 0.719(11.65%) 0.800(8.99%)

The performance of all evaluated models on the task of crossing
classification is reported in Table 4. As shown, IRN2Vec robustly
outperforms all the compared models, with improvement ratios
(compared with the best of these existing models, marked by ∗)
ranging from 8.65% to 11.65% in the three datasets.

5.4 Travel Time Estimation
Next, we demonstrate that the intersection embeddings learned by
IRN2Vec is also applicable for estimating travel time on given mov-
ing paths in road networks. In the following, we firstly introduce
the experimental setup, including the experimental flow of travel
time estimation, road network mapping, and then we show the ex-
perimental results of IRN2Vec in comparison with other methods.

5.4.1 Experimental Setup. Travel time estimation is a regression
task to predict the travel time of a given moving path in road
networks. Publicly available trajectory datasets, including San Fran-
cisco, Porto, and Tokyo, are processed for preparation of training
and used as groundtruth for testing.6 To avoid the regression model
to be trained by simply counting the number of sample points in a
trajectory to exploit the relatively fixed time gap between consec-
utive sample points for travel time estimation, we do not directly
use raw trajectories for travel time estimation. Instead, we map raw
trajectories onto their underlying road network to obtain sequences
of intersections (which depict corresponding moving paths of the
trajectories in the road network) by employing a state-of-the-art
road network matching techniques (i.e., Barefoot [12], a Hidden
Markov model based model). Thus, this task aims to estimate the
6 Note that the raw trajectory data contains the arrival time information of GPS sample
points in a trajectory which is not available for testing.

travel time of a given moving path (i.e., a sequence of intersections).
To achieve the goal, we apply a Long Short-Term Memory (LSTM)
model followed by three fully-connected layers (with dimensions
128, 128 and 1, respectively) as a regression model. More specif-
ically, given a moving path as the input, the LSTM model takes
each intersection in the moving path (replaced by its correspond-
ing learned embeddings) as a state to estimate its travel time. We
use mean absolute error (MAE) between the predicted result and
the ground truth extracted from raw trajectories (in seconds) as
the metric to evaluate the travel time estimation. Regarding the
parameter settings, we use the same parameter values used in the
experiment of traffic signal classification.

Table 5: Performance of Travel Time Estimation

San Francisco Porto Tokyo
UID 75.62 169.49 106.39

DeepWalk 64.97 163.17 95.74*
LINE 67.05 161.99 99.86

Node2vec 61.37* 160.65* 96.31
IRN2VecR 58.38 149.18 92.43
IRN2Vec 49.54(-19.28%) 141.96(-11.63%) 86.29(-9.87%)

5.4.2 Evaluation of models. The result of travel time estimation by
all evaluated models is reported in Table 5. As shown, we observe
that all the embedding-based methods outperform the UID method,
which has yet certified that the idea of using intersection embed-
dings in travel time estimation is indeed effective. Morever, the
results show that IRN2Vec outperforms all the compared methods.
The improvement ratios of MAE (compared with the best of these
existing models, marked by ∗) are ranging from 9.87% to 19.28% in
the three datasets. The results demonstrate that the intersection em-
beddings learned by IRN2Vec model is able to capture the intrinsic
properties of the road networks and thus improve the performance.
Finally, IRN2Vec again performs better than IRN2VecR (by about
4.85% to 15.13%) in the three datasets, demonstrating the impor-
tance of capturing the moving behaviors of mobile road users (i.e.,
by shortest path sampling) to achieve effective performance in road
network applications.

5.5 Test on Generality and Robustness
As mentioned earlier, this work aims to learn useful road network
embeddings for general support of various ITS applications. To
validate this idea, we learn intersection common embeddings by
IRN2Vec, denoted by Common, for common use in the three appli-
cations (i.e., traffic signal classification, crossing classification and
travel time estimation), in contrast to the fine-tuned intersection
embeddings optimized for individual applications. As the missing
tag detection tasks (i.e., traffic signal and crossing classifications)
heavily rely on tag information, we go with the extreme and simply
do not use any tags in model training in order to show the robust-
ness and generality of our intersection embeddings. We choose
the same parameter settings used in the traffic signal classifica-
tion, and set α=0.8 and β=0.2 which archieves good performance
by parameter tuning. We use the obtained embedding as common
embeddings in all applications, with the same parameter settings.
The performance of Common and the best model among compared
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Table 6: Evaluation of Common Embeddings in Applications
Traffic Signal Classification (F1-score) Crossing Classification (F1-score) Travel Time Estimation (MAE)
Best Baseline Common Best Baseline Common Best Baseline Common

San Francisco 0.713 0.831(16.55%) 0.717 0.754(4.91%) 61.37 52.94(-13.74%)
Porto 0.680 0.792(16.47%) 0.644 0.701(8.85%) 95.74 89.37(-6.65%)
Tokyo 0.639 0.757(18.46%) 0.734 0.788(5.40%) 160.65 147.62(-8.11%)

existing models, denoted by Best Baseline, is reported in Ta-
ble 6. The results show that Common is robustly outperforms Best
Baseline in all experiments. In specific, the improvement ratios in
terms of F1-score are ranging from 16.55% to 18.46% in traffic signal
classification, 4.91% to 8.85% in crossing classification, and the im-
provement ratio in terms of MAE are 6.65% to 13.74% in travel time
estimation, respectively. These results demonstrate that, although
the performance of Common is slightly worse than IRN2Vec which
optimized for individual application as shown in previous experi-
ments, the common embeddings (Common) are generally useful for
various applications, and thus meeting the goal of road network
representation learning. On the other hand, it also shows that the
information of intersection tags between intersections is usually
useful for representation learning if available and more complete.

6 CONCLUSION
In this paper, we focus on representation learning of intersections
on road networks. To the best of our knowledge, this is the first
attempt to capture intrinsic properties in a road network to tackle
the problem by exploring the geo-locality and homogeneity of
road network intersections and the moving behaviors of mobile
road users. To achieve the goal, we propose a novel two-phase
framework, namely IRN2Vec, to capture various geo-spatial charac-
teristics among intersections. The training data preparation algo-
rithm in Phase 1 samples shortest paths to prepare training data
for IRN2Vec. In Phase 2, the proposed IRN2Vec model captures var-
ious geo-spatial characteristics, including geo-spatial locality, same
intersection tags and same N-way types, for multi-objective learn-
ing. Empirically, we validate our ideas and show that the proposed
IRN2Vec framework is able to automatically learn effective embed-
dings of intersections to support a varity of ITS applications, e.g.,
prediction of traffic signals and crossings on intersections and travel
time estimation of given moving paths. Via extensive experiments
on multiple large-scale real-world datasets, we demonstrate the
superiority, robustness and generality of IRN2Vec to other methods.
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